OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 4503 Random Signals and Noise Spring 2007

Final Exam

For all students, choose any four out of five problems. Please specify which four listed below to be graded

> : 1)___; 2)__; 3)__; 4)__;

Name : _____

E-Mail Address:_____

Problem 1:

Assume the lifetime of a laboratory research animal is defined by a *Rayleigh* density function with a = 0 and b = 30 weeks in

$$f_X(x) = \begin{cases} \frac{2}{b}(x-a)e^{-(x-a)^2/b}, & x \ge a \\ 0, & x < a \end{cases}.$$

If for some clinical reasons it is known that the animal will live at most 20 weeks, what is the probability it will live 10 weeks or less?

Problem 2:

A random variable *X* is uniformly distributed on the interval $(-\pi, \pi)$. *X* is transformed to the new random variable $Y = T(X) = a \tan(X)$ with a > 0. Find the probability density function of *Y*.

Problem 3:

Given two random variables X and Y, find the probability density function of the random variable Z = X/Y in terms of $f_X(x)$ and $f_Y(y)$.

Problem 4:

Two random variables X and Y are related by the expression

Y = aX + b

where a and b are any real numbers.

(a) Show that their correlation coefficient is

(b) Show that their covariance is $\rho = \begin{cases} 1, & \text{if } a > 0 \text{ for any } b \\ -1, & \text{if } a < 0 \text{ for any } b \end{cases}$ (b) Show that their covariance is

$$C_{XY} = a\sigma_X^2$$
.

where σ_X^2 is the variance of *X*.

<u>Problem 5</u>: Two Gaussian random variables X_1 and X_2 are defined by the mean and covariance matrices

$$\begin{bmatrix} \overline{X} \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} C_X \end{bmatrix} = \begin{bmatrix} 5 & -2/\sqrt{5} \\ -2/\sqrt{5} & 4 \end{bmatrix}.$$

Two new random variables Y_1 and Y_2 are formed using the transformation

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}.$$

Find the matrices (a) $[\overline{Y}]$ and $[C_Y]$ and (b) find the correlation coefficient of Y_1 and Y_2 .